Article | June 13, 2021

New Insight Into RNA And DNA Relationship Could Lead To New Antivirals

Source: QPS LLC

RNA viruses are known to cause a large number of diseases in humans, including COVID-19, measles, influenza, hepatitis, yellow fever and Zika. Most new and reemerging viral diseases, in fact, are based on RNA. While vaccines often have been effective against RNA viruses, treatments for disease caused by these viruses can be more challenging.

One potentially valuable drug development avenue is identifying a mechanism that could halt the function of viral RNA polymerase (RNAP) — the enzyme that initiates RNA replication and thus propagates RNA viruses. By halting RNA polymerase, a drug could prevent an RNA virus from surviving.

Scientists, however, never knew how RNA polymerase exclusively acted on RNA and managed to avoid incorporating DNA building blocks into a length of RNA. A team from the University of Turku, Finland, and Penn State University discovered not only how viral RNA polymerase is triggered, but also how it avoids using DNA nucleotide building blocks, which are chemically similar to RNA. By precisely determining how minute changes in structures could change enzymatic activity, they could determine the biochemical basis for RNA polymerase’s exclusion of DNA building blocks.

access the Article!

Get unlimited access to:

Trend and Thought Leadership Articles
Case Studies & White Papers
Extensive Product Database
Members-Only Premium Content
Welcome Back! Please Log In to Continue. X

Enter your credentials below to log in. Not yet a member of Clinical Leader? Subscribe today.

Subscribe to Clinical Leader X

Please enter your email address and create a password to access the full content, Or log in to your account to continue.

or

Subscribe to Clinical Leader