Using Precision Medicine in Cancer Trials
By Jennifer Dennis-Wall, Ph.D.

Why is it that when we take 50 people of similar height and weight and measure their fasting blood glucose, we get 50 different results? Shouldn’t they be pretty much the same, since we are all humans? The answer to this may seem obvious, but a lot of science has been based on the assumption that we should be pretty similar and that the average person represents all of us. Nevertheless, our genes, lifestyles, and lots of other factors can cause our blood glucose levels to be a little different from person to person. This is called variation, or the spread of data points, and it is minimized as much as possible in research by trying to figure out what is causing small differences. When variation is too large, it is difficult to see clear differences between groups that are supposed to be different. For this reason, anytime variation exists and is not well-accounted for, it can hide the true results of an intervention, meaning that a clinical trial can be a bust. Precision medicine, while seemingly just a buzzword to most people, is a revolutionary strategy to deal with all this variation. This newer approach to medical research is quickly advancing the field of cancer therapeutics. Naturally, these advances introduce new challenges for researchers, such as evolving regulations and experimental design.
Get unlimited access to:
Enter your credentials below to log in. Not yet a member of Clinical Leader? Subscribe today.